
向心关节轴承的摩擦磨损性能研究
- 分类:新闻资讯
- 作者:
- 来源:
- 发布时间:2021-09-10 09:57
- 访问量:
【概要描述】首先要将优化前后的GEZ101ES向心关节轴承样品的外圈切割成两片圆心角为170。的轴瓦,将轴承内囹固定于同摩擦磨损试验机连接的轴.采用南京航空航天大学研制的轴承摩擦磨损试验机(见图3)进行摩擦磨损试验.首先在频率0.12 Hz、摆角±30。、MoS 锂基脂润滑、不同正压力条件下测定摩擦系数.先将正压力加载到150 kN,测定相应的摩擦系数,再依次按正压力250 kN、357 kN、500 kN、607 kN加载,测定相应的摩擦系数.共测定19组不同正压力条件下的摩擦系数,取不同正压力条件下摩擦系数的平均值作为关节轴承设计、计算及使用的依据.由于摩擦磨损试验机摆动过程中的摩擦力同摆动角有关,故从摩擦学角度而言,摆动时只要能通过最大摩擦力位置,则一定能够通过其它位置.鉴于此,我们测量得到最大摩擦力,并将其换算成摩擦系数,即得到最大摩擦系数.
向心关节轴承的摩擦磨损性能研究
【概要描述】首先要将优化前后的GEZ101ES向心关节轴承样品的外圈切割成两片圆心角为170。的轴瓦,将轴承内囹固定于同摩擦磨损试验机连接的轴.采用南京航空航天大学研制的轴承摩擦磨损试验机(见图3)进行摩擦磨损试验.首先在频率0.12 Hz、摆角±30。、MoS 锂基脂润滑、不同正压力条件下测定摩擦系数.先将正压力加载到150 kN,测定相应的摩擦系数,再依次按正压力250 kN、357 kN、500 kN、607 kN加载,测定相应的摩擦系数.共测定19组不同正压力条件下的摩擦系数,取不同正压力条件下摩擦系数的平均值作为关节轴承设计、计算及使用的依据.由于摩擦磨损试验机摆动过程中的摩擦力同摆动角有关,故从摩擦学角度而言,摆动时只要能通过最大摩擦力位置,则一定能够通过其它位置.鉴于此,我们测量得到最大摩擦力,并将其换算成摩擦系数,即得到最大摩擦系数.
- 分类:新闻资讯
- 作者:
- 来源:
- 发布时间:2021-09-10 09:57
- 访问量:
首先要将优化前后的GEZ101ES向心关节轴承样品的外圈切割成两片圆心角为170。的轴瓦,将轴承内囹固定于同摩擦磨损试验机连接的轴.采用南京航空航天大学研制的轴承摩擦磨损试验机(见图3)进行摩擦磨损试验.首先在频率0.12 Hz、摆角±30。、MoS 锂基脂润滑、不同正压力条件下测定摩擦系数.先将正压力加载到150 kN,测定相应的摩擦系数,再依次按正压力250 kN、357 kN、500 kN、607 kN加载,测定相应的摩擦系数.共测定19组不同正压力条件下的摩擦系数,取不同正压力条件下摩擦系数的平均值作为关节轴承设计、计算及使用的依据.由于摩擦磨损试验机摆动过程中的摩擦力同摆动角有关,故从摩擦学角度而言,摆动时只要能通过最大摩擦力位置,则一定能够通过其它位置.鉴于此,我们测量得到最大摩擦力,并将其换算成摩擦系数,即得到最大摩擦系数.
其次,我们用优化前后的GEZ101ES关节轴承试件进行磨损对比试验,试验条件为:正压力607 kN,摆动频率0.12 Hz,摆角±30。,在轴承的内外圈接触点附近摆动.规定以温升≥150℃、内圈或者外圈的磨损量≥150 m或套圈烧伤等3种情况之一作为判定磨损失效的依据.在全部试验过程中未发现套圈烧伤现象,经连续12 h磨损试验后试件温升不超过40℃ ,故以磨损量150 m作为试验终止的判定依据.用数显温度仪监测轴承的温度,采用千分表,在磨损试验过程中每隔4~6 h测量轴承外圈的厚度,用千分尺测量轴承内圈球径,磨损厚度等于初始厚度减去磨损试验后测定的厚度.
相关新闻

2023-08-30
1.接触疲劳失效
接触疲劳失效系指轴承工作表面受到交变应力的作用而产生失效。接触疲劳剥落发生在轴承工作表面,往往也伴随着疲劳裂纹,首先从接触表面以下大交变切应力处产生,然后扩展到表面形成不同的剥落形状,如点状为点蚀或麻点剥落,剥落成小片状的称浅层剥落。由于剥落面的逐渐扩大,而往往向深层扩展,形成深层剥落。深层剥落是接触疲劳失效的疲劳源。
2.磨损失效
磨损失效系指表面之间的相对滑动摩擦导致其工作表面金属不断磨损而产生的失效。持续的磨损将引起轴承零件逐渐损坏,并终导致轴承尺寸精度丧失及其它相关问题。磨损可能影响到形状变化,配合间隙增大及工作表面形貌变化,可能影响到润滑剂或使其污染达到一定程度而造成润滑功能完全丧失,因而使轴承丧失旋转精度乃至不能正常运转。磨损失效是各类轴承常见的失效模式之一,按磨损形式通常可分为常见的磨粒磨损和粘着磨损。
磨粒磨损系指进口轴承轴承工作表面之间挤入外来坚硬粒子或硬质异物或金属表面的磨屑且接触表面相对移动而引起的磨损,常在轴承工作表面造成犁沟状的擦伤。硬质粒子或异物可能来自主机内部或来自主机系统其它相邻零件由润滑介质送进轴承内部。粘着磨损系指由于摩擦表面的显微凸起或异物使摩擦面受力不均,在润滑条件严重恶化时,因局部摩擦生热,易造成摩擦面局部变形和摩擦显微焊合现象,严重时表面金属可能局部熔化,接触面上作用力将局部摩擦焊接点从基体上撕裂而增大塑性变形。这种粘着——撕裂——粘着的循环过程构成了粘着磨损,一般而言,轻微的粘着磨损称为擦伤,严重的粘着磨损称为咬合。
3.断裂失效
进口轴承轴承断裂失效主要原因是缺陷与过载两大因素。当外加载荷超过材料强度极限而造成零件断裂称为过载断裂。过载原因主要是主机突发故障或安装不当。轴承零件的微裂纹、缩孔、气泡、大块外来杂物、过热组织及局部烧伤等缺陷在冲击过载或剧烈振动时也会在缺陷处引起断裂,称为缺陷断裂。应当指出,轴承在制造过程中,对原材料的入厂复验、锻造和热处理质量控制、加工过程控制中可通过仪器正确分析上述缺陷是否存在,今后仍必须加强控制。但一般来说,通常出现的轴承断裂失效大多数为过载失效。
4.游隙变化失效
进口轴承轴承在工作中,由于外界或内在因素的影响,使原有配合间隙改变,精度降低,乃至造成“咬死”称为游隙变化失效。外界因素如过盈量过大,安装不到位,温升引起的膨胀量、瞬时过载等,内在因素如残余奥氏体和残余应力处于不稳定状态等均是造成游隙变化失效的主要原因。
1.接触疲劳失效
接触疲劳失效系指轴承工作表面受到交变应力的作用而产生失效。接触疲劳剥落发生在轴承工作表面,往往也伴随着疲劳裂纹,首先从接触表面以下大交变切应力处产生,然后扩展到表面形成不同的剥落形状,如点状为点蚀或麻点剥落,剥落成小片状的称浅层剥落。由于剥落面的逐渐扩大,而往往向深层扩展,形成深层剥落。深层剥落是接触疲劳失效的疲劳源。
2.磨损失效
磨损失效系指表面之间的相对滑动摩擦导致其工作表面金属不断磨损而产生的失效。持续的磨损将引起轴承零件逐渐损坏,并终导致轴承尺寸精度丧失及其它相关问题。磨损可能影响到形状变化,配合间隙增大及工作表面形貌变化,可能影响到润滑剂或使其污染达到一定程度而造成润滑功能完全丧失,因而使轴承丧失旋转精度乃至不能正常运转。磨损失效是各类轴承常见的失效模式之一,按磨损形式通常可分为常见的磨粒磨损和粘着磨损。
磨粒磨损系指进口轴承轴承工作表面之间挤入外来坚硬粒子或硬质异物或金属表面的磨屑且接触表面相对移动而引起的磨损,常在轴承工作表面造成犁沟状的擦伤。硬质粒子或异物可能来自主机内部或来自主机系统其它相邻零件由润滑介质送进轴承内部。粘着磨损系指由于摩擦表面的显微凸起或异物使摩擦面受力不均,在润滑条件严重恶化时,因局部摩擦生热,易造成摩擦面局部变形和摩擦显微焊合现象,严重时表面金属可能局部熔化,接触面上作用力将局部摩擦焊接点从基体上撕裂而增大塑性变形。这种粘着——撕裂——粘着的循环过程构成了粘着磨损,一般而言,轻微的粘着磨损称为擦伤,严重的粘着磨损称为咬合。
3.断裂失效
进口轴承轴承断裂失效主要原因是缺陷与过载两大因素。当外加载荷超过材料强度极限而造成零件断裂称为过载断裂。过载原因主要是主机突发故障或安装不当。轴承零件的微裂纹、缩孔、气泡、大块外来杂物、过热组织及局部烧伤等缺陷在冲击过载或剧烈振动时也会在缺陷处引起断裂,称为缺陷断裂。应当指出,轴承在制造过程中,对原材料的入厂复验、锻造和热处理质量控制、加工过程控制中可通过仪器正确分析上述缺陷是否存在,今后仍必须加强控制。但一般来说,通常出现的轴承断裂失效大多数为过载失效。
4.游隙变化失效
进口轴承轴承在工作中,由于外界或内在因素的影响,使原有配合间隙改变,精度降低,乃至造成“咬死”称为游隙变化失效。外界因素如过盈量过大,安装不到位,温升引起的膨胀量、瞬时过载等,内在因素如残余奥氏体和残余应力处于不稳定状态等均是造成游隙变化失效的主要原因。